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of the NAVLAB mechanism, sensors, controller, and Virtual Vehicle interface to higher-
lTevel planning and perception software.

Evolution of the CODGER Blackboard. Llast year, as part of this research program, we
designed and implemented the CODGER blackboard system for robot perception and reasoning
on a distributed coliection of processors. This year, in response to our experience in using
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robot vehicles, we developed the biriving Pipeline architecture last year for coordinating
road fnllowing, obstacle avoidance, and vehicle motion control. In our ongoing research,
we have performed numerous exneriments with this system that demonstrate its value.

This hardware and sofiware is the hasis for the New Generation System (NGS) for robot
vision and navigation, which integrates many independent technologies *o produce an
inteqrated mobile robot system.
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This report describes progress in development uf an integrated mobile robot system at the Carnegie
Mellon Robotics Institute from July 1987 to June 1988. This research was sponsored by the Defense
Advanced Research Projects Agency and monitored by the US Army Engineer Topographic Laboratories

Abstract

under contract DACA76-86-C-0019.

Our program includes a broad agenda of research in the development of mobile robot vehicles,
focused on the NAVLAB computer-controlled van. In the year covered by this report, we addressed major

Issues in both hardware and software for autonomous mobile robots:
+ Evolution of the NAVLAB Vehicle. We built the NAVLAB mobile robot vehicle in our

This hardware and software is the basis for the New Generation System (NGS) for robot vision and
navigation, which integrates many independent technologies to produce an integrated mobile robot

previous work under this contract, by outfitting a commercial truck chassis with computer-
controlled drive and steering controls and a set of on-board computer workstations. The
NAVLAB serves as a mobile navigation laboratory that aliows researchers to interact
intensively with the system during testing and execution. This year has seen a continued
evolution and improvement of the NAVLAB mechanism, sensors, controller, and Y.:tual
Vehicle interface to higher-level planning and percopticn software.

Evolution of the CODGER Blackboard. Last year, as part of this research program, we
designed and implemented the CODGER biackboard system for robot perception and
reasoning on a distributed collection of processors. This year, in response to our experience
in using CODGER for mobile robot control, we have upgraded it to deal with geometric
models and uncertainty in perception and map data.

Experiments With the Driving Pipeline. To contrcl the NAVLAB and Terregator mobiie
robot vehicles, we developed the Driving Pipeline arcn tecture last vear for coordinating road
following, obstacle avoidance, and vehicle motion control. In our ongoing research, we have
performed numerous experiments with this system that demonstrate its value.

system.
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Section |

introduction

Introduction and Overview

This report reviews progress at Carnegie Mellon from July 1, 1987, to June 30, 1988, on research
sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5682, and monitored
by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0019, titled
"Development of an Integrated Mobile Robot System." This report consists of an introduction and
overview, and detailed reports on specific areas of research.

In our previous work under this contract, we developed a computer-controiled mobile robot, the
NAVLAB, as a toc! and testbed for research in robot navigation, and we developed a software framework
for integrating vision, planning, and control modules into a singie working system. The modules
themselves are under development through a related research effort in "Road Following” which is also
sponsored by DARPA. The total system has been demonstrated in outdocr navigation runs without human
intervention, on a road in Schenley Park, Pittsburgh, near the Carnegie Mellon campus.

This year, we have made progress in several areas of the NAVLAB hardware anc software:

« Evolution of the NAVLAB Vehicle. We built the NAVLAB mobile robot vehicle in our
previous work under this contract, by outfitting a commercial truck chassis with computer-
controlled drive and steering controls and a set of on-board computer workstations. This
year has seen a continued evolution and improvement of the NAVLAB mechanism, sensors,
controlier, and Virtual Vehicte interface to higher-level planning and perception software.

« Evoiution of the CODGER Blackboard. Last year, as part of this research program, we
designed and implemented the CODGER blackboard system for robot perception and
reasoning on a distributed collection of processors. This year, in response to our experience
in using CODGER for mobile robot control, we have upgraded it to deal with geometric
models and uncertainty in perception and map data.

« Experiments With the Driving Pipeline. To control the NAVLAB and Terregator mobile
robot vehicles, we developed the Driving Pipeline architecture last year for coordinating road
following, obstacle avoidance, and vehicle motion control. In our ongoing research, we have
performed numernus experiments with this system that demonstrate its value.

Summary: Evolution of the NAVLAB Vehicle.

In this year, Robotics Institute researchers logged over 900 hours of mobile robot experiments abord
the NAVLAB. Significant maintenance efforts have been carried out to support this demanding schedule.
In addition, improvements have been made in several aspects of the NAVLAB itself, including the
NAVLAB hargware, new sensors, and improvement of the Virtual Vehicle Interface.

Ongoing development of the hardware has been aimed at improvement of the power generation,
reliability, and driveability of the NAVLAB. One problem was the failoff of power during uphill runs. This
was solved by replacing the original throttle with an analog engine speed control system to provide
constant engine speed and thus constant power. We also re-configured the on-board computers to




tfacilitate support of the WARP supercomputer on the NAVLAB. The motion control boards were
redesigned to provide smoother driving. All of these and other upgrades of the vehicle are placing an
ever-increasing 'oad on the air conditioning and weight limits of the vehicle.

We have aiso installed and integrated several new sensors on the NAVLAB. Two of these, a Global
Positioning System satellite recever and an inertial navigation unit, are joined together into a subsystem
for vehicle position determination. Another sensor is specialized for collisicn avoidance. a single-scan-
ine {1D) laser range scanner. This laser scanner allows us tc implement a rapid-response clearance
check for obstacles in the environment. This is necessary even with perfect 3D terrain and obstacle
sensing, because the control error In the vehicle can cause 't to deviate from the planned path througn
the terrain and obstacles.

The Virtual Vehicle Interface was also improved this year. This interface is the command set through
which the high-level software for perception and planning can communicate with the vehicle conrtrol
subsystem. Improvements to the Virtual Vehicle Interface include a new mode of operation that executes
commands immediately instead of queuing them in order of receipt, and providing more feedback (0 the
nigh-tevel software concernming vehicle status and the execution of commands  Also, the control software
can now hangle varable-length driving units, which was an important feature for conducting the Driving
Pipeline experiments described below.

This research is described in more detail in Section il: "Evolution of the NAVLAB Venhicle".
Summary: Evolution of the CODGER Mobile Robot Blackboard.

In the first year of this contract, the CODGER mobile robot biackooard was developed ang used 0 H
control the NAVLAB. CODGER implements a distributed database with a central database manager
module, and features data values and operators to support geometric reasoning for robot navigation. In
the last year, we have developed CODGER I, which is based on CODGER but iricludes new features to
address :mpartant issues in mobile robot integration.

The first set of new features in CODGER 1t were added to suport map regresentation. A rcbot that 5
navigating using a map needs to make many different kinds of queries about the data, such as "what is
the next road segment?” and "are there any visible obstacles in this region?". While CODGER | had
raciities ior gecmetnc renrasentation of polygons, it did not posess a mechanism for answering
topological questions about connectivity and adjacency. We JeveiGpld « Complcie 2D geometric
modeling capability and added it to CODGER for use in representing and utilizing map data

In @ mobile robot vehicle, the geometric relationships between the vehicle and the world are constantly
changing. and the venhicle itself may have moving parts such as vehicle suspension and pan-tiit mounts ,
for sensors. The systems needs to be able to maintain both the current relationships and a compiete
nistory of the geometnic relatonships among objects. To facilitate this, CODGER [l introduces the
concept of frame generators that represent time-varying geometric transformations between objects. The
objects themselves are organized into affixment groups of relatively stationary objects. Within an
athxment group, all geometric transforms are stationary, across affixment groups, the transtorms vary
over ime,

Representing map information 1s very important for vehicie navigaton, but map data is not always

ey




complete and accurate. It < very important for the venicle to be abie to update map information as it
makes new observations about the world. This requires that each observation about the world be
recorded, and be marked as an observation so that it can be used to incrementally revise the pre-stored
map information. QObservations are a particular type of frame generator. Whenever an observation is
made, the other frame generators are updatad to resolve any inconsistency between the old and the new
data. This same approach i1s used !0 resolve multiple, possibiy inconsistent, sources of information about
vehicle position itself; this provides a capability for landmark navigation that integrates on-board motion
sensors with lanamark recognition.

CODGER Il will be a capable framework for continued experimentation in the integration of symboliic
and quantitative map data with observations from a robot vehicle in the field. Trus research :s described
:n more getait in Section (Il "Evolution of the CODGER Blackboard”

Summary: Experiments With the Driving Pipeline.

Mobile robot vehicles must control the execution of numerous perception and planning processes 0
navigate successfully :n complex environments. In the past, most mobiie r0bot systems have uuhizec
"stop-and-go” control schemes that avoid addressing the dnving control problem, or have used ‘ixec
control schemes that do not allow for the changing environment and field of view of the venicle. This
report presents our architecture for mobile robot control cailed the "Driving Pipetine”. that integrates
muitipie perception and planning processes and provides continuous motion with adaptive control. The
Driving Pipeiine has been impg.. “ented and tested on numerous versions ¢of two vehicles: the Terregator
and the NAVLAB. It has proven 1o be a flexible and powerful mechanism for building integrated software
‘or mobite ropbot perception and planning.

The Drniving Pipeline is based on the principle of dividing the navigation area into smatil (5-10m) pieces
called driving unis. By dividing the ground into criving units, each unit can be processed separately by
tre varous sensors and planning systems on the vehicle.

The processing steps themselves include vision and range sensing, analys.s 3f the environment, arc
trajeciory planning. Each step must be executed in turn before the vehicle actually traverses each criving
umit. Since the steps are sequential and the vehicle travels sequentially over the driving units, the steps

can be executed in parallei on the successive driving units ahead of the vehicie. This arrangement
provides fast enough throughput to allow continuous motion of the robot vehicle.

The dnving units are not always the same lengin. Wrien the veh.cle appresches a curve of
intersection, the field of view of the sensors does not completely overlap the road. This reduces the
distance that the vehicle can look ahead; therefcre, smaller driving units will be used in such places.
Since the vehicle travels each driving unit in approximately constant time. the result 1S that the vehicle
autormatically and smoothly slows down when the vehicle turns.

When the vehicle has a map available in advance, the Driving Pipeline can operate as just described.
However, if there is no map, then the environmental analysis for one driving umit must be completed
before the rext driving unit can begin to be processed This reduces the ab'lity of the system to execute
multiple functions in parallel, and naturally resuits in a slower vehicle speed. Thus, the availabiity of a
map allows the vehicle to meve faster.




This research is cescribed beiow in Section IV, "Experments With the Driving Pipeine”
Summary: Ex7~ .nentation on the ALV

Qur excenerce at Carnegie Mellon includes both the integrated NAVLAB system (this contract) and
Dasic .esearch on perception and planning (the related Road-Foliowing contract). This nas given us at
MU a ratrer unique persgective on the interactor oetween the two. At the DARPA Autonomous Lang
venicie workshop i Vail, Colorago (Apni 1388), the subiect of discussion was = v basic research and
rtegrated system development can interact most profitaoy for both. Because of our experience :n botn
comains, we were asked by DARPA to prepare a summary after the workshop ‘or use as a piannirg
cocur~ent by the ALV and Strateqic Computing Vision communities for future researct  We preparec
S.CM a gocument, and it has been used for such research planming within the ALV/SCVision communty

Our experience nNas been both positive and negative N the interaction amonrg researcn paracgms
‘Dasc v systems) Our conclusions are:

« Basic research withoL: systems development can make great progress but eventualy
peccmes out of touch with real-world probiems

Beyond that point, integrated systems researcn and development is essential ‘or gefining the
spec:hic proplems that need o be addressed by further basic research efforts. Furthermore,
‘re simple act ot collectng data for pasic research becomes so demanding that onty an
~regrated system can serve as an appropriate data-collection platform.

When sgecific problems nave been defined through the system development effort, more
pasic research 1S then needed. Honwever, because 'ntegrated systems are big and have
great nertia, they are resistant to easy change. Thus, for purely software engineering
'e3asons. it s wrong !0 expect that ail the new basic research wil be fully compatibie with
existing systems Rather. the basic research should be allowed 0 “Diggy-back” on the big
systems. for example using the system to move 3 robot vehicle while collecting brand-new
data for off-'me anaiysis with the new perceptyal techniques.

Frally, when the basic research has shown how to construct new, more reliable and Jsefui
companents, then a new integrated system development s appropriate.

Trese 3sues are discussed n our report to DARPA, wnhich s reproduced as Appencix |
‘Expermenrtation Issues for Mobile Robot Systems™.  Although the report specifically taiks about the ALV,
‘e ssues and conciusions are appropriate for all research in large, integrated robot systems.

Accomplishments

T~e xey accemplisnments of this research in the time period from July 1987 to June 1988 have been:
« Venicle and controlier enhancements 1in support of 300 experimental hours.

« Fast processing of radiai range data for sateguarding by a soft bumper

« impravement of the Virtual Vericle Interface betwaan the high-ievel and low-level computer
systems

» Developmenr! of the CODGER II blackboard with new features for geometric modeling, ime-
varying coordinate systems, and uncertainty modeling.

» Exceriments with the Driving Pipeline and development of vanabie-sized dnving unts

» Demonstrations of compliete NAVLAB system with these new ‘eatures in Schenley Park.




Technology Transfer

The NAVLAB has a fairly unique status as a robot vehicle whose architecture 1s suited for researcn n
both integrated robot systems and nvidual component technologies (path planning, map navigation, anc
perception). Thus, the NAVLAB fills an important role in the research community as a focal point for
technoiogy transfer operations. The key areas of technology transfer to and from the NAVLAB have
been

» Exchange of software and concepts for perception and planning: Image data and visual

motion analysis code have been exchanged with the University of Massachuseits. A painh
planner developed at Hughes is being expanded on for use in the NAVLAB.

o Export of NAVLAB hargware and software for other robot vehicles: The CODGER database
has been sent to Martin-Marietta for use in the ALV, to other ALV contractors inclugirg FMC
and ADS, and to non-DARPA sites including NASA-Goddard and DEC. This hardware ard
software 1S being used at CMU and elsewhere for space exploration and underwater ‘o0Do!s
as well as several land vehicles.

Future Directions

We have identified several probiems and issues as likely directions for our research in the next year

e We need to develop a new generation of the low-level controller system that provides A
high-performance UNIX-like environment.

¢ The vehicle path tracking is not as predictable as we would like. We have begun 0 deveiop
a new path tracking method based on continuous replanning of quintic arcs to provige more
precise vehicle control.

» We will continue development of the x-y-8 path planner pased on the Hughes path pianrer.
and add to it uncertainty management and representation.

* The Miiving Pipeline concept has been very serviceable, but it has some key limitations. In
partcular, the need for a!l subsystems tc operate 1n a pipeline means that computationai a,d
sensing resources are not operated at maximum effictency. The new path pianner may
provide a good alternative scheduling mechanism for perception and other activities.




Section il

Evolution of the NAVLAB Vehicle

Under this contract, we developed the NAVLAB mabile robot van last year. With on-board sensors and
compuling, and seating and controis for researchers, the NAVLAB is a self-contained laboratory for
research in autonomous mobile robots

In the year from July 1987 to June 1988, Robotics Institute researchers loggec over 900 hours of
mobile robot experiments aboard the NAVLAB. In the course of this research, development has
continued on several aspects of the NAVLAB itself, including:

» Upgrades of the NAVLAB Hardware

» Integration of New Sensors

o Improvement of the Virtual Vehicle interface
In addition, significant maintenance has been carried out to support the demanding schedule of live
experimentation.

Ongoing Hardware Development

This year, we made several improvements to the NAVLAB's mechanical systems to enhance its power
generation, renability, and driveability {Figure 1):

e The NAVLAB, as originally designed, suffered from power falloffs during uphill runs, due
prmarily to inappropriate carburetor design. To correct for this deficiency, we designed, built,
and installed an analog engine speed controller, which replaced the original throttle. The
new throttle control adjusts the engine carburetion to maintain a constant engine speed
regardiess of ioad.

+ New computers were installed in early 1988: one rack was re-configured to consolidate three
SUN 380s into one enclosure, and a re-worked WARP supercomputer was installed in a
VME cabinet. Modifications to the air conditioning system were made to cool these devices.
In addition, thermal shutdown sensors were installed in the WARP to prevent overheating.
While we experienced no difficulties in providing ample, clean power for these computers, the
air conditioning is operating continuously at full capacity and will require an extensive
overhau!l or repiacement in the near future.

« The electrical power generation problems, stemming from generator design, were resolved
with the vendor in 1988. A clean, constant power supply is now in place.

« Sound proofing was added to reduce interior noise levels.
s The hydraulic drive controls were upgraded to increase their reliability.

« New motion control boards were designed, built, and installed to improve motion control;
driving performance is now smoother and virtually free of oscillation.

The net effect of all of these improvements is to create a more reliable research vehicle, with greater
uptime, more predictable behavior, and a better environment for the passenger/researchers. However,
there are additional mechanical issues that will need to be addressed in the near future. In particular,
some consideraticn will have to be given to engine performance. The vehicle's weight has doubied since
the project began, and as the capability to increase autonomous driving speed increases, so will the
demand for more horsepower.
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Integration of New Sensors

In conjunction with a related contract to develop high-speed off-road navigation, three new sensors
were integrated into the NAVLAB for specific experiments. These include a Global Positioning System
satellite receiver and an inertial navigation unit, which together we call the Vehicle Positioning System
(VPS), and a front bumper-mounted single-axis (1D) radial 1aser scanner that provides a "soft bumper” for
vehicle safequard. The inertial navigation unit provides position data that is consistently accurate to 0.5
m. However, inertial measurements tend to drift with distance traveled. Software proprietary to the
contractor processes data from the GPS to correct this.

To help with our experimentation, we devoted an extensive effort to developing utilities for imaging
inertial and range data. For range data, we developed utilities to store and retrieve scanner
. measurements. These images can be displayed on either a SUN or an external video monitor. We also
developed a utility to store and recail data collected from the VPS system. Data from the VPS can be
displayed relative to time or to any other VPS data. Finally, we developed utilities to display a reference
path and compare it graphically to the actuai path traveled.

Figure 2: Unexpected Obstacle Due to Control Error

With these new sensors, we were able to pursue the idea of clearance checking as opposed to the
traditional terrain planning for obstacle avoidance. In this approach, the space immediately ahead of the
veticle is continually checked for obstacles, instead of relying on strict adherence to a fong path pianned
through cluttered terrain. The problem with the traditional terrain planning approach arises from errors in
position estimation relative to a global coordinate frame. Such errors result in the vehicle following an
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actual path that deviates from the reference path by the amount of the error. However, since the tracking
and collision avoidance schemes use the same position estimate, collision avoidance continues to search
abcut the reference path rather than the actual vehicle path. Thus, even with perfect range data, terrain
planning can cause collisions due to imperfect vehicle cantrol. However, with online clearance checking,
collision avoidance is controtied at the lowest level by dedicated sensars that move along with the vehicle
and thus are centered on the actual path rather than the idealized reference path. This is illustrated in
Figure 2, which shows how control error ir the vehicle path can cause it to encounter obstacies that could
not be predicted from range data, even perfect range data, taken at a distance.

So far, the scheme we have used for collision avoidance presumes a flat and level ground piane. The
range sensor scans in a plane horizontal to the ground plane and thus is certain to miss objects lower
than the height of the beam. We have so far demonstrated an impiementation of collision avoidance
using two processors working on the vehicle at 5 mph. Consideration of other schemes is in progress
and will be implemented in simuiation in the near future.

Improvement of the Virtual Vehicle interface

The Virtual Vehicle Interface (VVI) is the command set through which the high-leve! planning and
perception software communicates with the low-level vehicle control system. In the past year, several
aspects of the Virtual Vehicle Interface were improved. One area of improvement was the enhancement
of the VVI command set. The new commands ailow explicit control of steering angle and drive speed by
a host computer. This feature enables high-speed path-tracking algorithms to supply reference signal
updates 1o :he vehicle servo controllers at rates of up to 4 Hz. In this mode of operation, no queuing of
commands takes place; the reference signals to the servo controllers are updated as soon as the
corresponding command is received. We also added status fields to the arc commands to indicate
whether a commanded arc was executed normally by the vehicle.

In addition, we improved the ability of the controller software system itself to respond to external events
occurning asynchronously. These signals include current gearing (low/high/neutral and forward/reverse),
control mode (computer/manual), brake status (on/off), and activation of the kill switch. These hardware
status signals have also been made availabfe to the host computer by activating the previously unused
"REP" command of the VVI command set.

The VV! was also modified to handle variable-length driving units, which allows it very naturally to
control speed at intersections. When the vehicle approaches an intersection to make a turn, the
lookahead distance of the sensars is reduced because of the bend in the upcoming path of the vehicle.
The NAVLAB can now account for this by shortening the driving unit size. The vehicle naturally slows
when passing through the turn, according to the driving unic size. This enhancement to the NAVLAB was
dictated by the needs of the Driving Pipeline research, which is described in Section IV of this report.

Finally, we have formulated a likely future enhancement that will be needed to the NAVLAB. There is a
need for faster processing of immediate arc commands, which are necessary to control the robot at
higher road speeds. During typical operation of the vision/navigation system, several immediate arc
commands are issued to the controller, with the intent that the most recent one of them is to supersede ail




12

previous ones. The controlier currently queues arcs in the order they are received. The new aigorithm,
which places highest priority on the most recently received commands, will allow faster execution of
immediate arc commands.
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Section Il

Evolution of the CODGER Blackboard

In the previous year of this contract. we designed and impiemented the CODGER mobile robot
blackboard to serve as the framework for the high-level NAVLAB software. CODGER was successfully
buit, and with it we have performed many experimental runs with the vehicle. On the basis of these
experiences, we have become aware of a number of additional problems in mobile robot system design
that have not been raised in the literature to date. Accordingly, we have implemented a new version of
CODGER with many fundamental new features that address these issues.

The CODGER | System

The basic design of CODGER was described in our previous annuai report, "June 1987 Annual Report:
Development of an Integrated Mobile Robot System at Carnegie Meilon” [8], and will not be repeated in
detail here. However, the significance of CODGER's key features has only become clear to us through
the last year of research and experimentation, so we witl begin with a brief review of CODGER.

CODGER is a “blackboard" of the type that is now fairly common for robot systems. Actuaily, in
traditional terms, it is a distributed database with synchronization facilities. Each module is then a
separate program, which communicates with the central database; the modules may all be on one
computer, or they may be distributed among machines on a network, or any combination of these. Some
other mobiie robot systems are based on message-passing, which is not equivalent to using a database:
a database system is more powerful then message-passing. To see this, note that there are two types of
data communication -- explicit passing of data from one module to a specific other module, and implicit
communication where the data is anonymously recorded, stored indefinitely, and reported to one or more
clients upon request. Message-passing systems impiement only the explicit communication, but require
an outboard "database module® to handle the implicit communication; whereas database systems
implement the implicit communication which can carry out explicit communication as a special case.
Thus, database systems are more powerful than message-pased systems. CODGER is a database
system, thus each module i1s provided with primitive operations to store data, to search for and retrieve
gata, and to wait for data to arnve (as in producer/consumer datafiows).

CODGER implements a centralized database, with a single program that actually stores the data and
handles all communications with the modules. CODGER thus has a "star" architecture with the database
module (called the LMB, "Local Map Builder") in the center. Other designs might be to distribute the data
by broadcasting and replicating all data, or by partitioning the database among the processing modules;
these provide the same functionality as the centralized implementation, and differ only in performance.
The centralized implementation of the CODGER database adds a bit of (usually negligible) overhead time
to data transfers, but it faciitates the implementation of many of the sophisticated features described
below, such as updating observed object locations when the vehicle position is corrected. The star
architecture of CODGER is therefore a good choice for a research-oriented mobiie robot system.

CODGER 1s based on a fairly standard database design that implements fokens composed of
attnbute/value pairs. The values are generally of common data types such as integer, floating-point
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What obstacles are
known to be within
this area?

Figure 3: The Need for Geometric Values

number, Boolean, string, enumerated type, or array (or set) of any of these. However, CODGER begins
to depart from traditional databases by incorporating geometric values as well. The need for geometric
values is illustrated in Figure 3. Here, the vehicle is traveling down the roadway, has perceived the road
boundaries, and wants to perform path planning. Therefore, the database is requested to provide the set
of all obstacles known to be within the area of the roadway, up to the desired planning horizon of the
robot. To perform the query, the database must know where to search; thus, three things must be
intersected:

« the area of the roadway
¢ the field of view of the obstacle (range) sensor
 the distance limit of the path planner

The resuiting intersected area is the search area for the the data retrievai; then, the Local Map Builder
(LMB) must find all obstacles whose area intersects this search area. To solve this problem, CODGER
implements data values that are geometric objects of the following types: point, line segment, polygon.
The search requests can specify a number of geometric operations such as intersection, union, centroid,
convex hull, area. For example, a module can request to find "all objects with area > 100" or "all objects
whose location is within the intersection of polygon X and polygon Y and whose distance from the
vehicle is less than 30". Such geometric primitives are necessary for geometric reasoning, which is the
heart of "middle-ievel” mobile robot planning for obstacie avoidance.

CODGER was the first system to implement such geometric reasoning along with other database
primitives, but it is no longer unique in that regard. Other systems, such as the SRI Core Knowiedge
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Figure 4: Fusion of Data in a Moving Robot

Svstem, also implement geometric reasoning. However, such facilities address only the most basic
problem in geometric reasoning. Figure 4 illustrates the additional problem that arises from attempting to
fuse data from several sensors in an asynchronous system. Here, vision data from time 17 is analyzed at
time 24, while range data from time 19 is analyzed at time 23; both results are fed into a sensor fusion
module at time 26, which produces an answer at time 28. The key point is that the data received by this
fusion module includes vision data reiative to the vehicle’s position at time 17, and range data relative to
the vehicle’'s position at time 19. Thus, all data concerning the vehicle/world relationsip must be time-
stamped, and the system must continuously maintain the vehicle-to-world transformation. Most systems
solve this problem by immediately transforming all data into some absolute world coordinates as soon as
it is received. However, this assumes that the vehicle-to-world transformation is alwavs accurate which
iS @ bad assumption for most robot vehicles.
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Figure 5: The Need for Muitiple Coordinate Systems

The problem is illustrated in Figure 5. In this figure, the vehicle had drifted from its ideal path, and the
drift was corrected at time 18. If the data were aiways stored in global world coordinates, then the vision
data from time 17 would have to be updated at time 18 when the vehicie position is corrected. However,
the vision system has just begun to analyze this data, and won't be finished with it until time 24. Thus,
the system has to remember until time 24 that the vision data from time 17 has to be corrected according
to the update of time 18! Such chains of geometric corrections quickly become unmanageable.
Therefore, CODGER implements a different approach. In CODGER, all data related to sensor
observations is stored relative to a "vehicle” coordinate frame, along with its time-stamp. The "vehicle-to-
world” transformation is parameterized by time. Thus, the fusion modulie at time 26 actually receives
sensor data from "vehicle at time 17" and “vehicle at time 19"; CODGER provides facilities for performing
ali necessary coordinate transformations. In this case, the transformation depends only on the relative
vehicle motion and is independent of the vehicle-ta-world update at time 18. Then, later on, when the




17

path planner attempts 10 relate the sensor data to the “world” coordinate system, CODGER will
automatically incernorate the entire history of the vehicle-to-world transformation including the update at
time 18. Thus, the vehicle-to-world update at time 18 will be automatically taken into account by
CODGER and need not be expilicitly remembered by the processing modules themselves.

These essential features -- geometric values and retrieval primitives, time-varying coordinate
transforms, and muitiple coordinate systems -- were all implemented in the original CODGER system a
year ago. However, the discussion here has pointed out a number of significant insights about the
system that were developed within this past year.

This year, the representational facilities in CODGER have been upgraded to deal with a number of
additional problems that we have encountered or that we anticipate as a result of our further
- experimentation with the NAVLAB venhicle. Together, we call this new version of the system CODGER Ii.

Geometric Modeling in CODGER |l

——+— What is beyond this road segment?

K What is beyond the side edge
of the road?

Figure 6: The Need for Connectivity Information

In CGOUGER |, the only information about object locations was contained in the polygon attached to
each individual object. This has not proved adequate to represent map information for two reasons, as
shown in Figure 6. First, there is a constant need to identify the roadway segments in order, which is very
difficuit using only geometric operations. The concept of "connectedness” of sequential road segments
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needs to be represented in the database itself. Additionally, for tasks such as perceptual identification of
road edges, it is necessary to ask what is "beside” the road so that its color can be identified. Such a
query requires that the current road segment have identifiable "sides”, with connectivity information for
each. CODGER | had no facility for representing such connectivity intormation.

—_-Q?oad Segment /ntersect/on SEMA NTIC
(Terra/n Patch LEVEL

[
I
I
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I
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!

! GEOME™RIC
LEVEL

Figure 7: The Semantic‘Geometric Network in CODGER i

The solution adopted for CODGER Il was to implement a combination of semantic and geometric
network, as illustrated in Figure 7. In this new representation, there is an upper "semantic” level in which
objects are represented symbolically with toplogical connections. However, there is no actuai quantitative
geometry at this level of representation. Instead, there is an additional "geometric” level of data objects in
which a compiete 2D modeling system is implemented. In the geometric ievel, each object corresgonds
to a ribbon or polygbn, with separate data tokens for each edge and each vertex. Thus, semantic queries
such as "what is the next road segment?” can be answered by tracing along the semantic/topological
pointers in the database, while metric queries such as "what is the shape of this intersection?” are
answered by examining the geometric objects and pointers. Different processing modules may be
interested in one or the other, or sometimes both, levels of the system.

The semantic/geometric network works well for representing map information, but it does not address
the issues raised by the task of map revision as the vehicle discovers details and corrections to add to the
a priori map data. Figure 8 shows an example of the problem: the map contains an error in the
coordinates of objects A and B. If A and B are stored geometrically in “world coordinates”, it is very
difficult to decide exactly how to modify those coordinates to reflect the new information. Instead, the
solution used in CODGER I is the customary one for geometric modeling systems -- each geometrical
entity is assigned its own "intrinsic” coordinate frame, and each geometric link has attached to it a
transformation between the intrinsic frames of the objects being linked. With this mechanism, the
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Map says these are
8 feet apart

We now see they are
g actually 10 feet apart

Figure 8: Map Revision Requires Local Coordinates

transformation from A to B can be updated as needed. Of course, this may create an inconsistency if A
and B are both defined in world coordinates; the inconsistency is handled by uncertainty-modeling
techniques described later.

Time-Varying Transformations in CODGER ||

With the new geometric modeling facilities of CODGER |, map information can be stored and revised.
However, such facilities are only suitable for a completely static world. When the vehicle moves in the
world, there arises a new type of geometric transformation that varies over time -- a dynamic
transformation. For example, the vehicle-to-world transformation varies over time, and the vehicle may
have a pan-tilt mount whose relationship to the vehicle also varies over time. To deal with time-varying
transformations, ait tr2nsformations should in concept be parameterized by time; thus, rather than asking
“what s the distance from A to B?" we should ask "what is the distance from A to B at tme T?" To
implement this, we introduce the concept of frame generators. A frame generator is a function F(t} that
returns a geomaetric transform for any given time t. Now, each link between geometric objects can have a
frame generator attached to it, So that time-varying relationships can be managed.

Several types of frame generators are needed to adequately represent all the necessary relationships
in the database. First, there are the truly tme-varying transforms such as the vehicle-to-world
relationship, which we symbolize as F(). However, most objects are stationary in the world and thus the
relationship to the world is the same for all times t. We call these constant transforms and symbolize
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What is the relationship between A and B?

Figure 9: Several Types of Time-Varying Relationship

F'
constant

f'

F(t) inferred constant

time-varying

Figure 10: Several Types of Frame Generator

them by F.. In Figure 9, object A is stationary and thus has a constant transform to the world coordinate
system. In this example, the vehicle observes object B at a specific instant of time . We call this an
observation, and denote its frame generator by F,o. This trame generator can only produce an actual
transform at the time t,, otherwise, \{s value is undefined. Taily, dlthough B is detected in sensor data
that is relative to vehicle coordinates, we do not believe that B is attached to the vehicle. Instead, we
assume 1t is fixed in the world and infer a frame generator to attach it to world coordinates. This requires
a new kind of frame generator that is constant, yet is inferred from observations; we call it an inferred
transform and denote it by f.. Note that it is determined from the observation and the vehicle-to-world
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transform according to f. = F,a F{ty). i.e. the product of the observation of B relative to the vehicle, and the
vehicle-to-world transform at that moment t, The resulting geometric modeling network is shown in
Figure 10

Range F* - F Q
Sensor VGhICleF<t

(t)

Camera

Figure 11: Affixment Groups

With this rich set of frame generators, all the important time-varying reiationships can be represented.
However, there is a danger that the system may degerate into a chaotic spaghetti of geometric
relationships, with no clear rules for finding the transform between two arbitrary objects. To eliminate this
problem, we have developed the concept of affixment groups, which are groups of objects that are
assumed to have a constant relationship to each other (Figure 11). We partition ail objects into affixment
groups of mutually fixed objects; thus, there is one affixment group for the world, containing ail objects in
the world, and one for the vehicle that includes all vehicle-relative objects. If the vehicle had a pan-tit
mount for a camera, the camera would have its own affixment group. Now, within each affixment group,
we create an object called the affixment object that simply represents the coordinate frame within which
the objects of the affixment group is defined. Each affixment group has a single affixment object. so there
1S one for the world coordinate frame, one for the vehicle coordinate frame, etc.

Now some simple ruies are adopted for the frame generators that link the objects in the database.
Every object defined in a coordinate system has a constant frame generator F. that links it to the
corresponding affixment object. Thus, for example, ali objects in the map have constant frame generators
that specify where they are in world coordinates. So, for any two objects in the world, the transform from
one to the other is simply computed from the transforms that link each to the world coordinate frame. No
search through the database is required. Where desired, objects within an affixment group may aiso
have constant frame generators that link them directly.

Constant frame generators are not ailowed to link objects from different affixment groups, because
such objects are assumed to be moving relative to each other. For these calculations, the affixment
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objects themselves are linked by a network of time-varying transforms F(t). One of these is the vehicle-
to-world transform; another may be the pan/tilt-to-vehicle iransform, etc. These time-varying frame
generators can produce transforms that depend on time. No other time-varying transforms occur in the
database; only those that link affixment objects. Thus, to find the transform between two objects in
different affixment groups, ot a particular time, one applies the constant transfarm from each object to its
respective affixment object, and the transform between the affixment objects which depends on the time.
Again, no search through the database is required to evaluate such relationships.

Uncertainty Modeling in CODGER II

Figure 12: Recording an Observation

When an object is read in from a map database, it can be directly attached to its affixment object by a
constant transform as described above. However, when it is derived from the robot's perception, a
slightly different representation is needed. The situation is illustrated in Figure 12. Here, an object has
been seen by the vehicle out it is assumed to be affixed to the world. 't would be wrong to affix it to the
vehicle, because then it would be assumed {0 move as the vehicle moves. Instead, the object is created
within the affixment group of the world, with an observation transform F,o to reiate it to the vehicle
coordinate system., To affix the object to the world, an inferred transform f. must now be created to relate
the object to the world coordinate system. This is done by using the observation transform in conjunction
with the current value of the vehicle-to-world transform. Thus, while the object is seen by the vehicle, it is
stored in relation o the world, using the best estimate of the current vehicte position.

Observations of objects can also form one of the most important sources of information for updating the
vehicle-to-worid transform, that is, for performing landmark navigation. Such navigation primarily takes
the form of correcting for drift and error that has accumulated over time from such other mechanisms
including wheel motion encoders, inertial guidance systems, and visual motion analysis. CODGER |l
includes a compiete facility for implementing such navigational updates. The basis for updating is the
representation of each geometric transform not only by its value, but also by the covariance matrix that
describes the uncertainty with which the value is known. Thus, at all times, geometric uncertainty is
recorded throughout the database. In this way, measurements that are slightly in error can be reconciled
by weighted averaging of muitiple uncertain values.
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Figure 13: Two Scenarios for Landmark Navigation

Two scenarios for landmark navigation are shown in Figure 13. In the first, an object A is known from
the map, and the vehicle now observes it. From the map, the representation of Figure 14(a) is created,
with a constant transform from the object to world coordinates. Now, when the observation is made, the
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(a): Since A is in the map, F* is known from the map data.

(c): When B is seen at t1, {* is calculated from Ft1 and F(t) at t1.
When B is seen again at t2, f* is recalculaied from Ft1, Ft2, and F(t) at t1 and t2

Flgure 14: Representation of Landmark Observations

situation is shown in Figure 14(b), where a cycle is created between the constant transform from world to
object, the observation from object to vehicle, and the vehicle position which is the transform from vehicle
to world. Any time there is a cycle in the geometric relationships, inconsistency may arise due to the
movement errors cited above and uncertainty in perception. Such cycles of uncertainty can be resolved
by classical least-squares methods to yield updated transforms that have optimal values. In this case, the
uncertainties that would be weighed against each other are uncertainty in the map data, uncertainty in the
perceptuai process, and uncertainty in the vehicle position estimate. Most likely, the vehicle position is
the least certain; thus, the effect will be to correct the vehicle-to-world mapping at this moment in time.

The second scenario of Figure 13 shows an object that is not in the map, but it is seen twice. The first
time it is seen, at time t,, an inferred transform is created to relate it to world coordinates. When it is seen
again at time t,, a new observation is obtained as shown in Figure 14(c). This creates a cycle of a
different type within the database. First, note that the inferred transform does not create a meaningful
cycle because it was only the resuit of the computation from the vehicie-to-world transform and the first
observation. However, the second observation and the first observation create a cycle as follows: the
observation from the object to the vehicle at time ¢,, through the vehicle-to-world transform at time ¢,,
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back through the vehicle-to-world transform at tme t,, and back to the object through the observation at
time t,. This cycle can be resolved to find the new optimal estimate of the inferred locaticn of the object in
the world, and aiso to balance this against the uncertainty in the vehicle-to-warld transform itself. Thus,
multiple observations of the same object give improved estimates of the vehicle position and motion.

Of course, it is also possible that several observations of an object simply cannot be reconciled
consistently with each other and with the estimated vehicle motion. In this case, there is a solid statistical
grounds for assuming that the object itself is moving. A new affixment group can be created for that
object, and it can now be tracked over time to determine its motion, i.e. the time-varying transform from
that object to the world. We have not performed any experiments along these lines, but this at least
points the way towards a data representation that can manage information about a dynamic environment.

We may note that each paosition or motion sensor, as well as the landmark navigation processes just
described, all produce "snapshot” estimates of the vehicle motion or the vehicle-to-world transformation.
These estimates themselves can be kept in a network. which will have many cycles; the classicai
aigorithms can then be used to provide a least-squares estimate for the entire history of the vehicle
motion. In this way, the current vehicle position estimate can be kept continuously up-to-date, and the
estimated history of vehicle travel wiil be smooth. Whenever a new, highly confident estimate is made,
such as the sighting of an important landmark, the vehicle’'s entire estimated history of travel will be
smoothly updated instead of producing an instantaneous "jump” to a new position.
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Section IV

Experiments With the Driving Pipeline

Introduction

High Level Plan

Driving Control Scheme
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Figure 15: Driving Control Scheme

This paper describes a driving control scheme for a mobile robot that drives the robot vehicle outdoors,
avoiding obstacles, and keeping the vehicle within a navigable area. As illustrated by Figure 15, the
driving control scheme takes a high-level navigation pian from planning modules and sersor data from
sensors, and generates vehicle motion commands, performing the necessary computations inciuding
perception, environment modeling, path planning, and vehicle control. We have developed a scheme for
the coordination of these tasks, which we call the Driving Pipeline. This paper describes the Driving
Pipeline, the various processes that it coordinates, and the experiments in which the Driving Pipeline has
been successfully used for building mobile robot systems.

Our objective is to build an autonomous mobile robot working in the real world in real-time, so we
adopted the following design goals:

« Flexibllity: Other systems have been developed that perform a single navigation task well;
however, these systems are not easily extended to handle a broad range of tasks.
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s Continuous Vehicle Motion: Continuous motion s more desirable than stop-and-go
motion, because it produces higher vehicle speeds and smoc .ner control.

» Adaptive Control: Driving control must be adaptive t0 the environment and 0 the internal
condition of the robot vehicle. For example, the vehicle should be able to drive faster using
less sensor data on a flat broad ground than on a winding narrow road. The driving control
scheme must adjust itS computation and maintain effective coordination among numerous
perception and planning processes.

+ Parallel Execution: For real-time motion, driving control requires a large amount of
computation in a variety of different procedures. For this end, parallel computing is the most
practical solution. In addition to small-grain paralielism such as parallel machines for signal
data processing, large-grain parallelism can be used to coordinate the various tasks involved
in driving. Parallel computing can take advantage of two kinds of parallelism: parallelism in
processing steps and parallelism in data to be processed.

in order to achieve these goals, we developed the Driving Pipeline. A pipeline is a form of parallelism
N which the computation is decomposed nto a sequence of processing steps, called stages, to be
executed in a fixed order. Typically, each stage is a separate processor receiving input data from the
previous stage and providing output data to the next stage. A stage commences execution whenever
data arrives from the input. A pipeline 1s used for performing the same computation over a number of
different data sets. Since the pipeline can begin processing a second data set before the first has
finished, the stages run in parallel. The pipeline processes data sets at the rate of one per cycle time.
The cycle time is the longest stage time. The total time required to process a given data set {called the
job time) is the sum of individual stage times. The construction of our pipeline is based on two key ideas:

» The Driving Unit: We divide the area in which the vehicle navigates (road, hillside, etc.)
into a sequence of small areas called driving units so that it can pracess each driving unit
separately. Each processing moduie for perception and planning will operate successively
on each driving unit in turn.

o Execution Pipeline: The Driving Pipeline ailocates the primitive processing steps along a
pipeline so each one can work independently, receiving input data from the previous
processing step and passing data to the following processing step.

These two key ideas enable the pipelined execution of the primitive processing steps on the sequence
of driving units, which provides enough throughput to allow continuous vehicle motion. As the vehicle
encounters changes in the road configuration, it can place driving units with different sizes and intervals
by adjusting the sensor view frames, execution intervals, and vehicle speed.

Although several mobile robot systems have been built in the past, they did not address driving control
scheme very deeply. Stop-and-go motion, aithough it does incorporate ail of the primitive processing
steps, deliberately avoids the problem of continuous motion control 2,4, 7, 11]. Waxman et al.
mentioned the necessity for vehicle speed adjustment using knowledge, but didn't show any method for
doing so[12]). Brooks developed a layered control structure that drives a vehicle continuously [1].
However, it does not have the ability to adapt the control to meet the changing needs of perception.
Dickmanns and Zapp develped a system for nigh-speed navigation on the German Autobahn {3]. This
sysiem tracks simple visual features (e g., white lines bordering the road) and cannot be easily extended
to handle more difficult perceptual scenarios.

To solve these problems, we have developed the concept o! the Driving Pipeline and verified it in two
experimental mobile robot systems: the Terregator and the NAVLAB. This paper describes the Driving
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Pipeline, including the component concepts of the Driving Unit and the Execution Pipeline, and describes
our experiments with these vehicles.

Processing Steps and the Driving Unit

We divide the computation necessary for driving control into the foliowing primitive processing steps:
» The Prediction step plans the area that the vehicle will move into next.

» The Perception step detects navigable area boundaries and obstacles using sensor data.

+ The Environment Modeling step makes a description of the vehicle environment and
updates the estimate of the vehicle position.

* The Local Path Pfanning step pians the vehicle trajectory.

e The Vehicle Control step drives the vehicle mechanism.
These steps must each execute in turn to process each area of terrain that the vehicle will traverse.

We developed the concept of the driving unit to indicate the area that each primitive step will process
once in each execution cycle. The vehicle’s entire route is divided into driving units which are passed,
one at a time, to each of the primitive processing steps. In this way, planning and perception are
synchronized to provide driving control.

Prediction and the Driving Unit

C1—

Figure 16: Sequence of Driving Units

The Prediction step works as the manager of the Driving Pipeline. It receives the high-level plan from
the map navigation level of the system, predicts the next chunk of area into which the robot vehicle
should move, and indicates it by defining a new driving unit. Because the driving units are placed in the
order that the vehicle travels, the sequence of driving units forms the vehicle passage, which outlines the
planned path of the vehicle (Figure 16).

The parameters for placing the driving units are:
« location of the driving unit;

» type of the driving unit : such as on-road, open-terrain;

« size of the driving unit : the width and length of the driving unit;

« interval of driving units : the distance between the centers of consequtive driving units along
the vehicle trajectory.

The driving unit location is determined based on the high-level plan derived from the navigational map,
combined with the vehicle's current position estimate. The type of driving unit can be road or intersection,
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depending also on the map and the vehicle position. The factu:. miat determine the size and the interval
area are discussed in the following sections.

Perception and the Driving Unit

The Perception step scans a driving unit with sensors to determine the key objects within it. Perception
results will be used by the Environment Modeling step both for determining navigable areas and for
updating the vehicle position estimate.

Two parameters, the driving unit and a scanning position, direct the Perception step. The driving unit,
which is given by the Prediction step, indicates the area that the Perception should see. Because sensor
data must cover the driving unit, the sizes of sensor view frames give the upper limit of the driving unit
sizes.

Th2 szanning position is the position at which the Perception step should scan the driving unit. Two
factors determine the scanning position: the required accuracy of the visual measurement, and the need
for specific vehicle position information. The required accuracy of the visual measurement is important
because of the reduced accuracy as distance increases. Thus, the vehicle should be close enough to the
driving unit to satisfy the accuracy needs of the Environmental Modeling step. The need for specific
vehicle position information also constrains the scanning position. The vehicle position estimation is
updated with both the perceptual results and dead reckoning from the control system. In general, the
perception result gives a more accurate vehicle position estimate. The vehicle position estimated with the
perception result will, of course, be a scanning position. Therefore, when the mobile robot system needs
an accurate vehicle position estimation at a specific position, this position should be the scanning
position.

Once the driving unit and the sca.:ning position are determined, the Perception step can calculate the
sensor view frame relative to the vehicle and aim the sensors. This enables Perception to aim the
sensors adaptively.

Environment Modeling and the Driving Unit

By analyzing the perception results, the Environment Modeling step produces an environment
description that indicates a navigable area from the current vehicle position toward the end of the last
scanned driving unit.

The Environment Modeling step also updates the vehicle position estimation. Because the vehicle is
traveling continuously and the scanning positions are discrete, the Modeling step merges the perception
resuit and the dead reckoning updates io estimate the vehicle positions between the scanning positions
and beyond the last scanning paosition.

Local Path Planning and the Driving Unit

The Local Path Planning step determines the physical vehicle trajectory within the navigable area
determined by the Modeling step, from the current vehicle position to the end of the last scanned driving
unit.

As shown in Figure 17, the local path pian restricts the minimum size of a driving unit, because the
driving unit m Jst be large enough to ailow the vehicle to manuever and avoid obstactes.

The Driving Pipeline includes two levels of path planning: the driving passage from the Prediction step
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Figure 17: Driving Unit Size for Vehicle Maneuvering

and the trajectory from the Local Path Planning step. If the map database is ccmplete, the driving
passage can be planned before navigation by consuiting the map data. If not, it is determined gradually
based on perception results from the previous driving units. This is the reason why we include pianning
the vehicle passage in the Driving Pipeline level of the system rather than in a higher level.

Vehicle Control and the Driving Unit

The Vehicle Control step drives the physical vehicle. It generates a set of motion commands for the
vehicie mechanism from the trajectory pian given by the Local Path Planning step. Because the trajectory
plan ends at the far edge of the last scanned driving unit, the vehicle never moves into an unscanned
area. Also, this step adjusts the vehicle speed to be optimal uniess the Local Path Planning step gives
commands on speeds (such as stopping at a specific place). The details will be described below.

Continuous Motion, Adaptive Control, and the Driving Pipeline

The simplest control structure for implementing the Driving Unit concept would be for the vehicle to
stop at the end of each driving unit, process the next one through each of the primitive steps, then drive
across the next driving unit and stop, repeating this cycle over and over. This paradigm is known as the
"stop-and-go” modei of vehicle control, and it produces very jerky motion as well as being far below the
optimum vehicle speed. To remedy these problems, we apply the concept of pipelined execution of the
primitive steps to farm the Driving Pipeline.

Pipelined Execution for Continuous Motion

In order to drive the robot vehicle continuously, the Vehicie Control step should work on one driving unit
after another without stopping the vericle. To accomplish this, the Prediction step, ine Perception step,
the Modeling step, and the Local Path Planning step must have finished processing the next driving unit
before the Vehicle Control step finishes the current driving unit. This is the reason that continuous vehicle
motion needs a Driving Pipeline to process multiple driving units in paraliel.

The Driving Pipeline supports continuous vehicle motion by using pipelined execution. As described
above, the processing steps are allocated along the pipeline, and the Driving Pipeline executes the
processing steps in parallel by passing a sequence of the driving units through this pipeline. Figure 18
ilustrates the pipeline execution of the Driving Pipeline as follows:

1. When the vehicle is on Driving Unit 1, the Prediction step places a new prediction for
Driving Unit 4.
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Figure 18: Pipelined Execution of the Driving Pipeline

. When the vehicle is on Driving Unit 2, the Perception step works on Driving Unit 4. At the
same time, the Prediction step places the next driving unit, Driving Unit 5.

. When the vehicle is on Driving Unit 3, the Modeling step determines the vehicle passage
and the Local Path Planning step plans the path to the end of Driving Unit 4. In parallel, the
Prediction step defines Driving Unit 6 and the Perception step works on Driving Unit 5.

. When the the Vehicle control step drives the vehicle on Driving Unit 4, the Prediction step is
defining Driving Unit 7, Perception is working on Driving Unit 6, and the Modeling and the
Local Path Planning step are working on Driving Unit 5.

Several key features of the Driving Pipeline make the pipelined execution possible. First is the concept

of the driving unit, which is critical because it allows the route ahead of the vehicle to be partitioned into
individual units for processing by the successive steps. Because each driving unit specifies an area on
which one processing step works, the Driving Pipeline may assign the different processing steps to

different areas aiong the vehicle passage.

The second is the constant flow of the driving units through the processing steps in a prearranged

sequence. Each driving unit is created at the Prediction step and is passed through the following steps
from one step to the next step ending with the Venicle Control Step, thus fcrming the data flow through
the processing steps. This flow is always one way and in the same direction; no driving unit skips any
processing step or goes back to the previous steps. Therefore, the order of execution of the primitive
processing steps can be "hard-wired” into the system without the need for symbolic reasoning to decide

what to do next.
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The third necessary feature is the independent computation of the processing steps. The computation
for driving control is divided into processing steps in such a way that each processing step performs a
aifferent function. £ach step requires as input only the outputs of the previous steps. Therefore, each
step can only work on a driving unit after the previous steps have ccmpleted their processing on that
drniving unt.

The fourth feature is the order of the driving units themselves. Since the driving units are created as
the vehicle travels and are placed along the vehicle passage, the order of their generation s always the
same as the order in which they are processed by the processing steps. Therefore, the Driving Pipeline
can feed the driving units to the processing steps continuously.

Finally, the ability of the sensors to look ahead of the vehicie more than one driving unit's distance is
necessary. This permits Perception to be working at a distance beyond the next driving unit. This
ulhimately limits the distance over which pipelining can be effective.

The existence of all of these features allows pipelined execution in both of the necessary aspects, the
processing and the data. The name "Driving Pipeline” comes from the pipeline of processing steps, the
sequence of driving units, and the pipelined execution. The following sections provide a more detailed
examination of the pipelined execution.

Execution Intervals of the Driving Pipeline

The "execution interval” of the driving control system refers to how often the maobile robot system
executes the cycle of the primitive processing steps. Adjusting the execution interval to be optimal is
essential for an autonomous mobile robot system, because the necessary execution intervals depend on
driving conditions such as the width, flatness, and curvature of the road. Execution intervals that are too
long may cause unstable vehicle motion, because the vehicle position and the path pian are updated only
once in each interval. On the other hand, execution intervals that are too short consume unnecessary
computation and slow down the vehicle speed because the amount of computation in each interval is
roughly constant

To provide the optimal vehicle speed control, the driving control scheme needs a way to compute and
change the execution intervais. In the Driving Pipeline the sizes of the consecutive driving units
determine the execution intervals, because each execution cycte works on one driving unit and the
number of driving units per unit trajectory length is equal of the number of the execution cycles.
Therefore, the Driving Pipeline is able to adjust the execution intervals by changing the driving unit
intervais.

It the vehicle could be controlled to exactly follow the planned path, the driving units could be made as
long as the range of the effective field of view of the sensors. Unfortunately, the actual vehicle trajectory
may differ from the Iocal path plan because of many reasons, particularly the error in the control
mechanism and the inaccuracy of dead reckoning. The cumulative error in the control of vehicle motion
and the allowed error tolerance in the vehicie position are the factors used to determine the driving unit
intervals.

The error in the vehicle position and direction, which grows as the vehicle travels, must be canceled by
the execution of the driving pipeline befare it surpasses an error tolerance. Therefore, if the accumulated
error increases very rapidly, the intervals of the driving pipeline must be shorter. If the accumulated error
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increases slowly, they can be longer. For example, because errors in the vehicle direction can produce a
larger accumuilated error in the vehicle position than errors in the vehicle dispiacement, the interval must
be shorter in turning than in moving straight.

prediction i — =i
Perception e | e —

Modeling — —t —

Local planning e p——q p————

==

Jehicle control [ e

_Figure 19: Badly-Balanced Execution of the Driving Pipeline

As mentioned above, vehicle maneuverability restricts the minimum size of a driving unit. If a driving
unit interval is shorter than a driving unit length, adjacent driving units overiap.

Parallelism in the Driving Pipeline

Aithough the pipelined execution aliows the processing steps to work in paratiel, it does not ensure a
high degree of parailelism. Figure 19 illustrates an extreme exampie in which parallel execution is not
well maintained. In this figure, the vehicle speed is too high. This brings the vehicle to the end of the
local path plan before the next plan is produced by the Local Path Planning step. The venhicle then has to
stop at the end of the current driving unit to wait for the new path plan to be compieted. In this example,
the Prediction step, the Perception step, the Environment Modeling step, and the Local Path Plan step
must work serially without any parailelism. In this section and the next we discuss the parallelism in the
Driving Pipeline and a mechanism for keeping it high. This section discusses paraliel execution among
the Prediction, Perception, Environment Modeling, and Local Path Planning steps. The next section
discusses parallelism between these steps and the Vehicie Control step.

The Prediction, Perception, Environment Modeling, and Local Path Planning steps generally work on
each driving unit sequentially, with their execution times overiapping each other on consecutive driving
units due to the execution pipeline. However, the parallelism among these steps depends on whether or
not there exists a sufficiently rich map database. When such a map exists, we call this the map
navigation mode; if not, the vehicle drives in the map building mode. The timing of the start of pipelined
execution varies in these these two modes. In the map navigation mode, the map database can offer
enough information so that the Prediction step is able to place a new driving unit without using the
perception results from the preceding driving unit, relying instead on the map database and the
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Figure 20: Parallel Execution Pattemn in the Map Navigation Mode

perception results from earlier driving units. Therefore, the Prediction step can work on the next driving
unit betore the Perception and the Environment Modeling steps finich the current driving unit. This
produces the execution pattem illustrated in Figure 20. In this case, since all processing steps are ready
to work on the next driving unit just after finishing the current one, complete pipelined execution is

achieved.
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Figure 21: Parallel Execution Pattern in the Map Building Mode
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In the map buiiding mode, the map database does not have enougn informaton about the unscanred
areas, so the Prediction step needs the perception result on the current driving unit in order 10 place the
next dnving umit. In this case, the Prediction step has to wait unti the Perception step and the
Environment Modeling step finish the current driving unit. The resuiting execution pattern is ilustrated in
Figure 21. Consecutive execution cycles overlap less in the map building mode than the map navigaton
mode.

The aifference between the map navigation and map building modes explains one reason that a 7ich
map database results in a higher vehicle speed than the poor map database. In addition, a rich map
database allows perception to potentially be faster and more accurate, thus reducing the processing ‘ime
and/or allowing larger driving units.

In both execution modes, the scanning position is a key factor in maintaining these parailei execution
patterns because it regulates the execution patterns. The Environment Modeling step, the Local Path
Plan step, and the Vehicle Control step start just after the previous step finishes. The Predictior step
starts just after the Perception step finishes in the map building mode, and may start any time in the map
navigation mode. So, all of these steps can start at a time independent of the actual vehicie progress
On the other hand, the Perception step can start working only when the vehicle reaches the des:red
scanning position. The scanning positions that produce the highest paralleiism, ilustrated n Figures 20
and 21. are given by the following equation:

T
mmine di 4
scanning distance = T
(4

L (1

L

where

L; = driving unit interval

Tp = total job time of Perception. Environment Modeling and Path Planning
T. = cycle ime of Driving Pipeline

In this equation, the "scanning distance" is the distance from the scanning position to the driving unit 10
De scanned. The "cycle time” is the time between consecutive execution Ccycles, which is the ume taken
for the vehicle to travel one driving unit. In the map navigation mode, the cycle time is determined as:

T =T 12
C m

whereas in the map building mode, the cycle time ts:
T.=Max (T, .T,) i3

where
T, = job time of the most time consuming step
T, = total job time of Prediction, Perception and Environment Modeling

in the map navigation mode, if the most time consuming processing step works in the whole cycle time,
the execution pattern wiil be the most condensed and will exhibit the highest degree of paralleism. In this
execution pattern, the Perception, Environment Modeling, and Local Path Planning steps must work after
the vehicle passes the scanning position. That 1s the derivation of the above equation for the map
navigaton mode. In the map building mode, the processing for the sequence of the Prediction,
Perception, and Modeling steps can not overlap with the processing of this sequence for consecutive
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driving units. Therefore, this execution sequence behaves like one individual processing step. That is the
reason for the above equation for the map building mode.

Vehicle Speed and Driving Pipeline

The Venhicle Contro! step must take into account the execution time of all the processirnig steps in order
to achieve the optimum vehicle speed. Too high a vehicle speed requires the vehicle to stop at the end of
each driving unit, as described in the previous section. In this section, we discuss the highest possible
vehicle speed and the method to achieve it.

Because the distance that the vehicle moves in one cycle time is equal to the interval of the driving
unit, the highest vehicle speed is described by the following equation:

L
vehicle speed < T_‘ (4)

[4

The maximum vehicle speed is less than the driving unit interval divided by the cycle time because
distance must be allocated for decelerating the vehicle in the event that some stage of the pipeline
requires more time than expected.

If the scanning position is adjusted as described above, the cycle time is given by Equations 2 and 3.
Then the above equation can be rewritten as follows:

in the map navigation mode,

L;
vehicle speed = T &)

m

and in the map building mode,

(6)
Li
vehicle speed = —————
peed = Max(T, . T)

These equations are based on the highest degree of parallelism among the processing steps and
therefore give the highest achievable vehicie speed.

The vehicle speeds given by these equations are possible only when the scanning position is optimally
adjusted. The scanning position, however, may be determined by other factors as described previously.
For example, the scanning distance may be shorter than the distance given by Equation 1 because the
Perception step requires a closer distance for more accurate measurement. If the scanning distance is
shorter than the distance given by Equation 1, the speed of the Driving Pipeline is given by the following
equation:

D

vehicle speed = -T—’ M
p

where
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D, = scanning disiance

These equations (Equation 4 - 7) describing the vehicle speeds explain the following vehicle behavior
patterns, which demonstrate the adaptive control capabilities of the Driving Pipeline:

» The most time consuming processing step limits the highest vehicle speed. The Driving
Pipeline is capable of adjusting the vehicle speed to be as high as the processing times will
allow.

e Longer driving unit intervals produce a higher vehicle speed. I[f the robot vehicle drives in
easy driving conditions such as a broad, flat, straight road, then the Prediction step may
define driving units with large intervals. The vehicle speed will then be adjusted to be higher.

o Likewise, shorter scanning distances produces a slower vehicle speed. If the Perception
step has to look at objects from a closer distance, the vehicle slows down. This behavior is
similar to a human driver looking around carefully.

These behaviors need not be explicitly programmed into the system. They arise naturally as a result of
the operation of the Driving Pipeline and the calculation of each driving unit interval based on the
geometry of the road, the vehicle, and the sensor field of view.

Although Equations 4~ 7 assume that each processing step always requires a constant execution time,
the actual requirements may vary from time to time and place to place. In such a case, the Driving
Pipeline calculates the vehicle speed with the following equation, which is a modified version of Equation
7.

D

vehicle speed = — 8)
Tr
D, = remaining distance of local path plan

T, = remaining job time

In this equation, D, is the distance from the current vehicle position to the end of the path plan in the
current driving unit, and T, is an estimate of the total remaining execution time for the Prediction,
Perception, Modeling, and Local Path Planning steps working on the next driving unit. The initial value of
T, is a predicted execution time for these processing steps. Whenever these processing steps finish
processing a driving unit, T, and D, are recalculated and the vehicle speed is updated. This allows the
vehicle speed to adaptively respond to the changing requirements for its own computation time.

The Driving Pipeline in Action: Experimental Resulits

Implementing the Driving Pipeline

We have developed and tested the Driving Pipeline through building several experimental mobile robot
systems, called Sidewalk System 2, Sidewalk System 3, and the Park System, [S][6] [10]. Sidewalk
System 2 and Sidewalk System 3 drive an experimental vehicie called the Terregator on the network of
sidewalks on the campus of Carnegie Mellon University. The Park System drives the NAVLAB, a
computer-controlled van, on a road in Schenley Park adjacent to Carnegie Mellon. Figure 22 shows
these vehicles, which are both equipped with color TV cameras and a laser range scanner made by
ERIM. While the Terregator is linked to several SUN-3 workstations in the laboratory with radio




Figure 22: Terregator and Naviab

communication and cables, the NAVLAB carries four SUN-3s on board. In the remainder of this chapter,
we will describe primarily Sidewaik System 3 because it demonstrates the Driving Pipeline most clearly.

Figure 23 shows the module structure of Sidewalk System 3. The processing steps are implemented
as individual programs and are linked through the CODGER distributed database, a system-building tool
written at Carnegie Mellon to support large-grain parallelism for mobiie robot navigation [9]. CODGER
makes it relatively easy to build the Driving Pipeline because of its capability to support parallel
processing among muitiple computers. All of the systems mentioned above use CODGER in this way.

Processing Steps and Driving Units

Figure 24 shows a diagram of the primitive processing steps working on one driving unit in approaching
an intersection. Figure 24(a) shows the driving unit placed by the Prediction step. In Figure 24(b), the
trapezoid is the sensor view frame aimed by the Perception step to cover the driving unit. Figure 24(c)
shows the vehicle position estimated by the Modeling step. The Vehicle Control step drove the vehicle as
ilustrated in Figure 24(d).

Pipeline Execution and Parallelism

Figure 25 is a recorded timing diagram of the processing steps. The bars in the figure indicate the time
during which each step is processing a driving unit. The driving unit number appears next to the bar.
Because Sidewalk System 3 has a complete pre-stored map database, the Prediction step does not need
to wait for the Perception step to place a new driving unit and the consecutive pipeline executions overiap
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completely. This is the "map navigation” mode described above. Because the scanning position and the
vehicle speed were adjusted as described above, the most time consuming step (Perception) was the

limiting factor in the cycle time of the system.
Execution Intervals

Because turning at intersections requires more accurate vehicle position estimation than following
sidewalks, and because the Terregator vehicle makes larger dead reckoning errors in turning than in
straight motion, the Prediction step uses a shorter driving unit interval while the vehicle is turning. Figure
26 shows the driving unit intervais around the intersection and the straight sidewalks. On the other hand,
Sidewalk System 2 used constant driving unit intervals and had unstable turning because of the large
dead reckoning error. Sidewalk System 3, however, did not have such unstabie motion thanks to the

adjustment of the driving unit intervals.
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Figure 24: Processing Steps

Vehicle Speed

Figure 27 shows a recorded vehicle speed that was adjusted according to Equation 8. The venhicle
speed was recalculated whenever the processing steps were done. The vehicle slowed down around the
intersection where the driving unit intervals were shortetr and went back to a high speed on the straight
road where the driving unit intervals were longer. Because of the hardware limitations of the Terregator
vehicle, the vehicle speed could not be changed frequently; this is the reason that the recorded vehicle
speed is not smooth.
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Figure 25: Timing Diagram of the Processing Steps

Sensor Aiming

Our experiments on the Carnegie Mellon campus test site showed the necessity for adaptive sensor
aiming. The fixed sensor view frame created a problem in turning at the intersections, because the
vehicle had to turn through a large angle and the fixed sensor view frame could not cover the destination
sidewalk while the vehicle was turning. To remedy this problem, the sensor view frame has to be aimed
so that it covers the vehicle's destination. in addition, the scanning distance must be different in following
straight sidewalks and in tuming through intersections. In turning through an intersection, the vehicle
position estimation must be accurate in both the vehicle’s heading direction and the direction
perpendicular to the vehicle’s heading. Therefore, the scanning distance must be short. During straight
travel, however, the vehicle position estimation along the vehicle's heading direction does not need to be
S0 accurate and the scanning distance may be longer.

Figure 28 shows the sensor view frames and the scanning positions. The scanning positions were
calculated using Equation 1 and the local path plan that was produced in the previous execution cycle.
The scanning distance varied at the intersection and on the sidewalks.

To aim the TV camera into the predicted driving units, pan and it mechanisms are needed. This can
present a very challenging timing problem if mechanical pan and tilt mechanisms are used. To avoid this,
the Terregator vehicle was equipped with two cameras and switched between them instead of using a
mechanical pan. The TV cameras had wide angle lenses and covered broad areas. The Perception step
processed the desired rows of the image in place of a mechanical tilt. This "software pan/tilt™ is very fast
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and simple to program, as opposed to a mechanical pan/tilt which is relatively slow and difficult to controi
optimally. However, the software pan/tilt requires duplicated sensor hardware.

Our experiments have demonstrated the basic operation of the driving pipeline and dynamic
adjustment of the execution interval, vehicle speed, ana aim of the sensor. We have shown that the
speed of the vehicle must be reduced and the driving unit shortened in situations involving uncertainty in
the map or large vehicle control error (e.g., driving in intersections). Likewise, we have shown that the
vehicle can drive quickly using large driving units on well-mapped straightaways. At both extremes and
across the range we have demonstrated how the scanning distance can be adjusted to maximize
parallelism.
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Section V

Conclusions

Evolution of the NAVLAB Vehicle

The NAVLAB vehicle has been a successful platform for mobile robot research, logging over 900 hours
of experimental time. At this point, we are pushing up against the various physical limitations of the
vehicle: electrical power, air conditioning, internal volume, and weight capacity. This limits the total
computational power of the NAVLAB and its suite of sensors. Thus, future improvements must optimize
the quality and use of these resources rather than simply adding on more and more equipment.

We have also found in this research that the lov: level vehicle control must incorporate many different
subsystems, each of which may implement a simple controi scheme, rather than doing everything in a
single computational loop. For example, we needed to build an analog coruro! system to provide constant
engine speed, so that power wculd not fall off during uphill runs. This would have c.en very difficult to
implement by adding more code to centralized controlier software.

in addition, there is a constant demand for more and more powerfui sensors and control systems. The
reason is that the robot has certain neecs, -uch as knowing its position and the 3D description of the
environment. These needs can either be met by adding appropnate compiex hardware, or by clever
- ‘wware with simpie hardware. The software is sometimes theoretically possible to write, but developing
it i major research in itself, and it may or may not work. Therefore, for actually building a vehicle, the
best solution is almost always to buy the best available hardware. This means a very large capital outlay
IS needed to obtain the equipment necessary to sustain the most productive research. Otherwise, the
researchers spend all their time trying to compensate for the poor quality equipment. In the NAVLAB, this
shows up most clearly in the need for a high-quality GPS and INS for vehicle position determination, and
the need for the WARP and other massive computational power.

Evolution of the CODGER Blackboard

The CODGER blackboard system has reached a certain level of maturity in its current form, CODGER
. CODGER Il includes many facilities for map data representation, map revision, and vehicle position
estimation, that distinguish it qualitatively from other mobile robot systems. Although not all of the
uncertainty-modeling facilittes have yet been implemented, the system has already proven to be very
useful in simple map-updating experiments. Such experiments are among the most challenging mobile
robot tasks, because they require perception of an unknown environment as well as integration of
information with existing map data.

To accomplish this, the CODGER system centraiizes the task of managing geometric and other map
data. This is an example of the "database” approach in which each module talks to a central database of
map nformation, as opposed to the "message-passir j° approach in which each pair of communicating
modules do so as needed. The database approach is more powerful than the message-passing
approach because it aliows anonymous storing and fetching of data; thus, it is more conducive to
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supporting robot development research. CODGER uses this central database to implement centralized
faciities for storing and retrieving geometric data.

The data representation facilities ot CODGER include primitive geometric objects, organized into a
complete 20D geometric modeling network with local coordinate systems, and time-varying transformatic- -
among the objects. We have developed the concepts of frame generators and affixment groups as ways
to manage the complexity and ambiguity of representing time-varying relationships. With this battery of
tools, the NAVLAB uses CODGER to implement real performance of map updating missions.

Experiments With the Driving Pipeline

The Driving Pipeline is a driving control scheme to control a robot vehicle maneuvering in the physical
world. By organizing and managing the primitive processing steps, the Driving Pipeline provides the
foliowing capabilities:

» Continuous Vehicle Motion: The [riving Pipeline drives the vehicle continuously by
adjusting the vehicle speed and executing the Vehicle Controi step in parallel with other
processing steps.

» Parallei Execution: The Driving Pipeline executes the primitive processing steps in parailel
and maintains a high degree of parallelism. Thanks to the pipelined execution, the Driving
Pipeline achieves the highest possible vehicle speed.

+ Adaptive Control: The Driving Pipeline is capable of adapting sensor aiming, vehicie
speed, and execution intervals to the driving conditions.

These capabilttes 2 the Driving Pipeline are made possible by the two key ideas of the Driving
Pipeline, the driving unit and the pipeiined execution of the processing steps. By using driving units, the
data to be processed is divided into a sequence of driving units that can be processed separately by the
processing steps. The steps themselves are designed to work in a fixed order on each driving unit.
Because of the pipelined execution, the computation for these processing steps can be overiapped on
successive driving units. These pipelines in both the processing steps and the data enab.. the pipelined
execution, giving rise to parallel computation and continuous vehicle motion. The driving units also
enable adaptive control. By adjusting the location, size, and interval of each driving unit, the Drivino
Pipeline adapts the processing to the driving situation. The pipeline execution thus enables the adaptive
control in the continuous vehicle motion.

The Driving Pipeline clearly describes the driving control scheme in four aspects: primitive processing
steps, organization of these processing steps, execution scheduling, and control parameters. In the case
of stop-and-go motion, the last th,ee aspects of the driving control scheme are implicit and do not need to
be well defined. However, to achieve our goals -- continuous motion, paralle! execution, and adaptive
control -- we have developed the Driving Pipeline based on an explicit understanding of all of these
aspects. This is why the Driving Pipeline is capable of controlling both geometry, such as the sensor view
frames, and time, such as execution timing. Adjusting the vehicle speeds demonstrates these capabilities
of the Driving Pipeline.

Although the Driving Pipeline supports continuous vehicle motion, the primitive processing steps
involved in the Driving Pipeline employ only static algorithms. The Perception step, for example, analyzes
the sensor data witho t taking into accgunt the vehicle motion. Similarly, the Local Path Planning step
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determines the trajectory path plan as if the vehicle were not moving while the Local Path Planning step is
processing. By intrcgucing the driving units, the Driving Pipeline converts dynamic problems into a set of
static problems for each driving unit. By employing the pipelined execution, the Driving Pipeline overlaps
the static processing steps to perform dynamic vehicle motion. This feature of the Driving Pipeline gives
two advantages. First, the Driving Pipeline makes it easier to build mobile robot systems by integrating
relatively well developed processing algorithms for perception and path piarning. Second, the Driving
Pipeline provides a test bed for studying these primitive algorithms using real mobile robot systems.

Future research will center on expanding the concept of the driving unit and pipelined execution to
accomodate muitiple consors, uncentainty in the map database, and off-road travel. Multipie sensors with
difrerent view frame sizes introduce additional synchronization points into the pipeline, thus affecting the
execution flow. Uncertainty about the positions of objects in the map affects the aiming of the sensors
and vehicle speed. For example, in the presence of little uncertainty, the vehicle can look far ahead and
drive quickly. Off-road travel provides a new set of Prediction, Perception, and Planning steps to be
incorporated with on-road travel in a single pipeline to permit multiple modes of ravigation. Algorithms
are needed to dynamically determine the parameters of the pipeline in these scenarios while maximizing
parallelism.

Technology Transfer From This Research

The NAVLAB has a fairly unique status as a robot vehicle whose architecture is suited for research in
both integrated robot systems and invidual component technolegies (path planning, map navigation, anc
perception). Thus, the NAVLAB fills an important role in the research community as a focal point for
technology transfer operations.

One level of technology transfer involving the NAVLAB has been the exchange of software and
concepts for perception and planning. In 1987, researchers from the University of Massachusetts
obtainred data from the NAVLAB for use in their visual motion research under DARPA's SCVision
=rogram. They sent CMU their code, which was evaluated at CMU in terms of its suitability for tasks such
as visual navigation for the NAVLAB. Additionally, Hughes Corp. developed an x-y-8 path ptanner, which
appears to be very valuable for mobile robot navigation. CMU is now undertaking to improve and
enhance this path planner by incorporating vehicle kinematics models, uncertainty modeling, and
computational speedups. The resulting module promises to be a key ingredient in future versions of the
NAVLAB software system.

In addition, the NAVLAR hardware and software developed under this contract has been exported to
other sites or used as the basis fc~ research in other robot vehicles. The CODGER bilackboard database
has been sent to Martin-Marietta, where it has controlled the ALV, and to other ALV contractors including
ADS and FMC. It has also been sent to several non-DARPA sites, including NASA-Goddard, DEC, and
Florida Atlantic University (for use in underwater robot design). On the low-level side of the system, the
controller has been adapted for building the Locomg¢tion Emulator (L), a platform for the emulation and
study of various schemes for wheeled robot locomotion. The LE controlier consists of two Intel 80286
processor boards that run code developed for the NAVLAB; the user interface code was expanded to be
more user-friendly since the LE's application involves more human interaction than the NAVLAB. The
development of the LE controlier occurred at the same time that the NAVLAB was switching from Galil
motion control boards to the newer Creonics boards. The LE was used for development and testing of
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the new Creonics device driver, to reduce the downtime of the NAVLAB vehicle.

The NAVLAB controller architecture, along with much of the perception software, will be the basis for
corresponding components of the Mars Rover being developed at CMU under NASA sponsorship. As in
the NAVLAB, a muititasking, priority-based real-time operating system is used to implement
asynchronous I/0 and coordination of robot motions. The Creonics motion controi cards, found to be very
effective for the NAVLAB vehicle, are now being adapted for the Mars Rover. In addition, the path
planning and terrain perception capabilites of the NAVLAB are being used as the basis for the Mars
Tove software In addition, the FASTNAV project unaer sponsorship from Caterpiiiar Corp. used tne
NAVLAB as the basis for studying high-speed autonomous traversal of known roadways.

Future Directions

We have identified several problems and issues as \ikely directions for our research in the next year:

* We need to develop a new generation of the low-level controiler system that provides a
high-performance UNIX-like environment.

« The vehicle path tracking is not as predictable as we would like. We have begun tc develop
a new path tracking method based on continuous replanning of quintic arcs to provide more
precise vehicle control.

« We will continue development of the x-y-8 path pianner based on the Hughes path planner,
and aad to it uncertainty 1anagement aid representation.

« The Driving Pipeline concept has been very serviceabie, but it has some key limitations. In
particular, the need for all subsystems to operate in a pipeline means that computational and
sensing resources are not operated at maximum efficiency. The new path planner may
provide a good aiternative scheduling mechamism for perception and oiher activities.
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Appendix |

Experimentation Issues for Mobile Robot Systems

The following document is incorporated into the annuai report. It chronicles the role that the research
under this contract has played in aiding DARPA's formulation of a research agenda in mobile robots and
real-world machine pe:ception.

A workshop was held in Vail, Colorado, in april 1988, for the purpose of planning the ongoing research
in the ALV (Autonomous Land Venhicle) and SCVision (Strategic Computing Vision) programs. One of the
key 1ssues addresed at this workshop was how the basic research community might benefit from the
continued availability of working, integrated robot systems such as the ALV, and what are the limitations
of such integrated systems for supporting basic research. The Pls on this (NAVLAB) contract made a
presentation to outline a number of possible research paradigms, and also to indicate what we have
learned from the NAVLAB about the iimitations of using an integrated system to support basic research.

After the workshop, we were asked by DARPA to prepare a document to summarize these issues. The
following is that document. It has been used by DARPA internally and in conjunction with other research
contractors in the ALV/SCVision community, as an aid to identifying the best strategies for continued
research in this area.

Aithough the document refers specifically to the ALV at Martin-Marietta, the broad issues apply
generally to big-system robotics research and may therefore be of interest to ali readers. For that reason,
we include the document in this annual report.
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EXPERIMENTATION ON THE ALV:
TEMPLATES FOR EXPERIMENTS IN 1988 AND BEYOND

by Steve Shafer, CMU
18 April 1988

Submitted to DARPA and the ALV Experiment Steering Group.

Abstract

At this point in the ALV and SCVision programs, there exists a highly capable and instrumented vehicle
and accompanying software system at Martin-Marietta, along with an engineering and development staff.
At the same time, a number of the Technology Development Contractors (TDCs) in these programs have
deveioped research paradigms and software with varying degrees of maturity. To further the
development of research in vision and navigation, plans are now needed for interaction to provide the
TDCs with the data and system facilities they need from the ALV to promote basic research, while at the
same time providing Martin-Marietta with access to the most mature software to add to the repertoire of
the ALV system.

Two relevant facts have become clear through the research to date: First, the notion of building a
single "integrated" system by somehow applying Super-Glue to all the component technology research is
neither practical nor desirable at the present time; and Second, the disparate properties of the various
technology research efforts demand many different plans for interaction with Martin-Marietta.

This document presernts a brief discussion of the nature of system integration and how it differs from
experimentation. At present, it is experimentation rather than integration that will serve as the best model
for joint effort between Martin-Marietta and the TDCs. A number of possible modes of experimentation
will then be outlined that may be suitable for various types of technology research with varying degrees of
maturity. It is hoped that this outline will form a basis for closer cooperation and joint activity between the
Technology Development Contractors and Martin-Marietta in the near future.
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INTEGRATION AND EXPERIMENTATION

It 1s tempting to believe that perhaps the ALV software system comprnses a framework into which
component research results can be inserted, like electrical plugs into sockets, forming a harmonious
working system with interchangeable parts.

Unfortunately, the state of robotics research is not sufficiently advanced to support this mode!l. In aorder
0 create working mobile robot systems, typically numerous software moduies must be made to work
together in harmony, each consisting of tens of thousands of lines of code, and each performing a highly
compiex function. We attempt to define the interfaces between these modules as specificaily as we can,
but these descriptions fall far short of being complete characterizations of such complex software. The
most obvious aspects of a module that we typically describe as interface specifications inciude some
abstract task description and perhaps the programming conventions for communication with the other
modules: yet equally important are the programming language and operating system assumptions made
by the module, the amount of time it 1s allocated for execution, the amount and nature of the vehicle
mouon between successive invocations, the nature of the sensors, the resoiution of the input and output
data. the nature of the test data used to deveiop the module, et cetera, et cetera, et ceteral

All these factors must be compatible with the other modules in the system in order for the
integrated system to succeed.

Suppose for a moment that we desire t0 create a high-performance integrated system using pieces
from more than one development site. Not only must these factors be described in detail in the interface
specifications, but each contractor must build this compiex research software in confoarmance with these
elaborate descriptions. This would not be a recipe for successful research -- it would be a demanding
development effort suitable only for mature software -- the antithesis of creative and wide-ranging
research.

To develop integrated systems at the current state of the art demands an extraordinarily high
pandwidth ot communication among the module developers over an extended period of time, so that each
module can be conceived and matured within a shared model of the context for execution of every
modute in the system. For this reason, muiti-site integration has not been the methodology utilized by the
successful system-building efforts at Martin-Marietta, CMU, Hughes. and other ALV/SCVision sites.
Rather than that, these sites have relied on a methodology of intensive in-house system development,
with the smallest possible bandwidth of interface to software developed elsewhere. This has been a
successful approach so far, and should continue to be so in the future.

However, this model does little to contribute to the development of component technology research,
which s essential for us to push the state-of-the-art most rapidly. For this research, it is not reasonabie to
demand that preliminary conceptuai development should produce polished "modules” that will instantly fit
Nto someone eisa's highly evoived system. A more appropriate view is that the existing ALV system can
contribute in various ways to the maturation of the concepts and software being developed at the various
sites. This can take place through a number of forms of experimentation that take forms other than the
Integrated system model described above.

This document briefly sets forth descriptions of @ number of possibie templates of expenmentation that
appear to be promising models for productive collaboration between Martin-Marietta and the Technology
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Development Caontractors 10 promote research in both SyStems ang component technologies for
navigaton and vision.

EXPERIMENTATION TEMPLATE FOR SYSTEM DEVELOPMENT RESEARCH

To date. several systems have been developed for outdoor navigation of sophisticated vehicles within
tre ALV anag SCVision programs. These systems have all had several features in common:
* 3 perception subsystem
e 3 planning subsystem
¢ 3 virtual vehicle to follow elementary path descriptions

¢ a softwarg framework 10 bind together these elements
In some cases, all of these elements have been developed at a single site. such as Martin-Marietta or
CMU. Such efforts have been quite successful, but fall outside the scope of this document.

There have also been successful experiments involving ALV support for other contractors' system
development efforts, and these establish a template for future efforts as follows:

TEMPLATE A: VIRTUAL VEHICLE SUPPORT FOR SYSTEMS EXPERIMENTS

Description: When a contractor has developed a complete system, there may be many reasons
for testing it on the ALV:

« To perform live testing when the developer does not posess a vehicle.
» To test the system in conditions not available at the development site.

+ To take advantage of hardware, software, or expertise not available at
the development site.
« To test the system in a standardized scenaric for comparative purposes.

In this case, the usual desire is 0 preserve ne integnty of the system as much as
possible, using only the smallest bandwidth interface o the ALV. This involves using
the hardware and Virtual Vehicle of the ALV, with ail of the other software elements
being provided as part of the imported system.

Suitabihity: This model of experimentation is appropriate for a complete system developed
outside of Martin-Marietta, which runs in real-time on hardware and operating
systems available at the ALYV site.

TOC Preparation: Preparation by the the TDC includes ensuring that the system conforms to the
interface requirements of the ALV virtual vehicle, and ensuring that the system wtil
run with the sensors, computing hardware, and system software at Martin-Marietta.

M-M Preparation: Martin-Marietta is responsible for the vehicte and sensor hardware, the virtual vehicle,
and the basic computing hardware and system software.

One result of each experiment in this model is the potential for Martin-Marietta to accumulate these

compiete working systems as tools to support the other experiments described below. Of course, Martin-

Maretta cannot be expected to provide substantial manpower for the maintenance of such systems over
time.

Like all experiments involving the ALV, the TDC must expect to send one or more people to Martin-
Manetta for some period of time to accompiish the experiment. Because of the intensive resource and
personnel requirements on the part of both Martin-Marietta and the TOC, it may be appropriate for
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concrete planning to be undertaken well in advance of the experiment and for DARPA to provide explicit
funds for undertaking the experiment. Joint research proposals to DARPA appear to be a good
mechanism for achieving both of these goals.

EXPERIMENTATION TEMPLATES FOR COMPONENT
TECHNOLOGY RESEARCH

The previous model is aimed at systems experiments, but does not address the role of the ALV in
supporting basic research. There has been some concern on DARPA’s part that perhaps the ALV is not
a useful tool for promoting basic navigation and vision research, but this appears to be groundless. The
fack of support in the past can be attributed to the startup and system-building effort at Martin-Marietta,
and the progressive maturation of the technology development efforts throughout this period. At present,
there appears to be a clamor for access to the ALV on the part of the TDCs, because of the richness of
the data and the system context it can provide.

Each module or aigorithm being investigated as a component technology needs to undergo a
potentially lengthy process of maturation in terms of quality of results, robustness, speed of execution,
and mating to the ALV system. before it can be fully integrated as a module in the system. At each stage
of evolution, a somewhat different type of experiment with the ALV may be appropriate. Accordingly,
several models of experimentation are outlined here, in order of increasing evolution of the module. ltis
not suggested that every module ulilize all of these types of experimentation, nor that this list is
exhaustive; this is simply a menu of several options that currently appear to be of general interest. Some
of these have already been performed in the past, or are currently in progress.

TEMPLATE B: GENERIC DATA COLLECTION -- THE SIMPLEST CASE

Description: The simplest use of the ALV to support basic researchers is in generic data
collection. This involves the use of the hardware and sensors of the ALV, along with
calibration and/or ground truth data. The input is a specification of the data needed,
which must conform fairly closely with the capabilities of the ALV system itself. The
output is the data set and accompanying descriptive data.

Suitability: This mode of operation is suitable for modules in early stages of development, with
little or no compatibility with the ALV system.
TDC Preparation: The TDC must provide a complete specification of the data to be collected. In

addition, the TDC should expect to send someone to Martin-Marietta to participate in
the data collection process.

M-M Preparation: Cantrol of the hardware and software, and provision of the accompnying data.

TEMPLATE C: CUSTOMIZED DATA COLLECTION WITH DIRECT VEHICLE CONTROL

Description: There are some reasons why generic data collection may not be adequate for a
particular basic research effort:

» need for unconventional sensors or configurations

eneed for data collection patterns not compatible with normal ALV
operation
In these cases, a more appropriate form of experiment would be for the TDC to
mount the desired sensors (if other than the usual ALV sensors) on the vehicle, and
to perform data collection while directly providing instructions to the virtual vehicle to
cause the ALV to move in the desired way. In this case, the ALV is being utilized




Suttability:

TDC Preparation:

M-M Preparation:

simply as a platform for moving sensors outdoors, along with the accompanying data
recording equipment and instrumentation.

This mode of experiment is also suitable for modules that are not particularly
compatible with the current ALV system, and would provide much more detailed
controi over the data collection than Type B experiments.

The TDC must ensure that the necessary sensors will be available to the ALV, and
must prepare software to give the desired commands to the virtual vehicle of the ALV
software (uniess manual control is to be used).

Martin-Marietta must ensure that the virtual vehicle is working and may need to
provide a hicer interface for the TDC to utilize. It may be desirable. for example, to
provide a small repertoire of LISP functions that the TDC software can call to cause
the vehicie to move in simple ways. In addition, Martin-Marietta must ensure that the
TDC will have software access to the sensors and the data recording media for the
experiment. If the sensors include controls such as pan/tilt, zoom, or focus, some
hardware and software interface must also be provided.

TEMPLATE D: CUSTOMIZED DATA COLLECTION WITH THE ALV SYSTEM

Description:

Suitapility:

TDC Preparation:

M-M Preparation:

A variation of the above plan is to perform data collection while the ALV moves along
the path it would normally foilow (such as a roadway), but using unconventional
sensors or movement increments. In this case, the TDC needs to meet all the
requirements above, but the intention is to utilize the entire ALV system to move the
vehicle to successive data collection points, rather than interfacing directly to the
virtual vehicle. It is also possible that the experimenter will need access to some
internal data from the ALV such as the vehicle attitude.

This is better suited than Type C experiments when it is important for the vehicie to
travel as it will in an actual demonstration run. For example, this may be desirable for
an object recognition module looking at an object at the side of the road as the ALV
travels along the road -- in this case, the TDC does not desire to control the vehicle
path, but may need to control the distance of travel between image collection points.
The vehicle path must be controlled by the ALV system, which must therefore utilize
all the normal perception and planning elements of the full ALV system.

Similar to Type C. In addition, if internal ALV system data is needed, the TDC will
need to utilize the software provided by Martin-Marietta to make it available.

Supporting a Type D experiment requires a substantially more sophisticated interface
to the ALV system than the Type C model above. The mode of operation would still
be essentially stop-and-go, but the full ALV system will be running essentially in
paraliel with the TDC software. Again, Martin-Marietta will probably need to provide a
smaii repertoire of commands to be used by the TDC software to invoke vehicle
motion; however, only the distance of motion would be adjustable by the TDC. If the
module needs internal data from the ALV system, Martin-Marietta will have to provide
a software mechanism to make it available.

TEMPLATE E: OPEN-LOOP PIGGY-BACK EXPERIMENTATION

Description:

The data collection models presented above should ailow for much more flexible and
sophisticated data collection than has occurred in the past. However, the amount of
data that can be pragmatically collected and transmitted to the TDC by these means
is still somewhat limited. When a module has been tested on such stored data and
has matured to the point that it runs in reasonably realistic time, it is possibie to
expose the algorithm to a much larger amount of data by actually running it in a
"piggy-back” mode, in parallel with the ALV system but only loosely connected to the
basic ALV software. This can be viewed as an extension or evolution of the Type D
data collection experiment; but rather than store the data at each point, the data
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would be actually run through the experimental module on-line. The output of the
module could be stored for later analysis, or could be displayed for direct on-line
evaluation, debugging, and error analysis. This can put the researchers into fairly
intimate contact with the performance of their algorithm under real operating
conditions. In fact, if the output is fairly closely related to some internally generated
data of the ALV system, Martin-Marietta might provide a way for the TDC software to
get a copy of the internal data for comparison purposes. In this case, a direct
comparison can take place on-line - though the ALV will, of course, be actually
controlled by its own internal data rather than by the potentially flaky results of the
experimental module. If the module is really running at real-time speeds, then the
ALV might be able to undertake continuous motion while running the piggy-backed
experimental module in parallel.

Suitability: Before a module can realistically be run in this mode, it must be tested on real,
canned ALV data, producing reasonably good resuits, and it must run in a reasonable
amount of time. Processing time per frame of sensor or path data ought not to
exceed, say, several minutes or perhaps a fraction of an hour; otherwise, the motion
ot the vehicle will be only a few frames per hour, which can be taxing on the ALV
visicn system due to environmentai changes, and would be in any case a colossally
inefficient waste of research time and money. In the best case, processing time per
frame ought to be between a few seconds and a minute. Of course, this might
require considerable engineering of the module such as recoding for the WARP or
Connection Machine.  However, if the module is promising under Type D
experimentation, then there is a strong motivation to do the necessary enginering to
take it to the stage of this Type E on-line testing.

TDC Preparation: The TDC must be willing to prepare the module to meet the criteria above, and to
integrate the vehicle control commands into the module to allow it to be run in
onniunction with the ALV scitware. If special sensors are needed, these must of
course be provided and configured by the TDC.

M-M Preparation: Similar to the Type D scenario, in the simplest case. !f the vehicle is to run in
continuous motion, or if the TDC needs access to internal data from the vehicle to
compare with its output, then more work will be required by Martin-Marietta.

TEMPLATE F: CLOSED-LOOP PIGGY-BACK EXPERIMENTATION (Module Replacement)

Description: The Type E "open-loop™ model provides for ALV input to the experimental module,
but the output of the module is not fed back into the ALV system. That model is
therefore useful for early on-line testing. Once a module has been run successfully in
that mode, if the output is useful to the ALV system, then it may be desirabie to hook
up the output to feed back into the ALV system. In this way, a functional replacement
can be made for a part of the ALV software, or a new source of information can be
made available to it. This allows on-line testing of the module as a system
component, which is a qualitatively different concern than the previous experimental
madels that test the module as an entity on its own. At this stage, Martin-Marietta
may decide to incorporate the module into its baseline ALV system. This constitutes
technology transfer of actual code, which can be seen as an evolutionary step that
must follow a substantial preliminary process of module development and testing as
outlined in the previous tempiates.

Suitability: Only a mature module, running in realistic time on the ALV and known to provide
high-quality output in a form compatible with the ALV system, is a suitable candidate
for this mode of experimentation.

TDC Preparation: Successful Type E experimentation is probably a pre-requisite for closed-loop testing.
In addition, the instigator of the experiment (the TDC or Martin-Marietta) must be
prepared to modify the module to produce its output in a form suitable for direct
utilization by the ALV system.
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M-M Preparation: The ALV system itseif must be modified to accept the data produced by the module.

PROGNOSIS FOR RESEARCH PROGRESS USING THE ALV

At the present time, there appears to be a substantial demand on the part of the technology and
systems researchers to have access to the ALV as a data collection platform, experimental system
context, and virtual vehicle. While the interactions between Martin-Marietta and the technology
development sites have been limited in the past, the current degree of maturity of the various efforts is
creating an increasing need for data that can only be provided by the ALV or by prohibitively elaborate
laboratory facilities. Hopefully, this document will promote future interactions by providing some common
mcdels of expermcntation between Martin-Marietta and the various Technology Development
Contractors.
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Selected publications by members of our research group, supported by or directly related to this
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1. Color Vision for Road Following. Crisman, J. and Thorpe, C. Presented at SPIE
Conference on Mobile Robots, November 1988.
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and Stentz, A. International Journal of Robotics and Automation, to appear. Also appeared
as technical report CMU-RI-TR-88-8.

3. Perception for Rugged Terrain. Kweon, |., Hebert, M., and Kanade, T. Presented at SPIE
Conference on Mobile Robots, November 1988.

4. Experimentation on the ALV: Templates for Experiments in 1988 and Beyond. Shafer,
S. Presented to DARPA for use as a planning document within the ALV and SCVision
Programs.

5. 1987 Year End Report for Road Following at Carnegie Mellon. Thorpe, C. and Kanade,
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